
This paper is included in the Proceedings of the
26th USENIX Security Symposium
August 16–18, 2017 • Vancouver, BC, Canada

ISBN 978-1-931971-40-9

Open access to the Proceedings of the
26th USENIX Security Symposium

is sponsored by USENIX

CLKSCREW: Exposing the Perils of Security-
Oblivious Energy Management

Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo, Columbia University

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang

CLKSCREW: Exposing the Perils of Security-Oblivious Energy
Management

Adrian Tang
Columbia University

Simha Sethumadhavan
Columbia University

Salvatore Stolfo
Columbia University

Abstract
The need for power- and energy-efficient computing has
resulted in aggressive cooperative hardware-software en-
ergy management mechanisms on modern commodity
devices. Most systems today, for example, allow soft-
ware to control the frequency and voltage of the under-
lying hardware at a very fine granularity to extend bat-
tery life. Despite their benefits, these software-exposed
energy management mechanisms pose grave security im-
plications that have not been studied before.

In this work, we present the CLKSCREW attack,
a new class of fault attacks that exploit the security-
obliviousness of energy management mechanisms to
break security. A novel benefit for the attackers is that
these fault attacks become more accessible since they can
now be conducted without the need for physical access to
the devices or fault injection equipment. We demonstrate
CLKSCREW on commodity ARM/Android devices. We
show that a malicious kernel driver (1) can extract secret
cryptographic keys from Trustzone, and (2) can escalate
its privileges by loading self-signed code into Trustzone.
As the first work to show the security ramifications of en-
ergy management mechanisms, we urge the community
to re-examine these security-oblivious designs.

1 Introduction

The growing cost of powering and cooling systems has
made energy management an essential feature of most
commodity devices today. Energy management is cru-
cial for reducing cost, increasing battery life, and im-
proving portability for systems, especially mobile de-
vices. Designing effective energy management solutions,
however, is a complex task that demands cross-stack de-
sign and optimizations: Hardware designers, system ar-
chitects, and kernel and application developers have to
coordinate their efforts across the entire hardware/soft-
ware system stack to minimize energy consumption and

maximize performance. Take as an example, Dynamic
Voltage and Frequency Scaling (DVFS) [47], a ubiq-
uitous energy management technique that saves energy
by regulating the frequency and voltage of the proces-
sor cores according to runtime computing demands. To
support DVFS, at the hardware level, vendors have to de-
sign the underlying frequency and voltage regulators to
be portable across a wide range of devices while ensur-
ing cost efficiency. At the software level, kernel devel-
opers need to track and match program demands to oper-
ating frequency and voltage settings to minimize energy
consumption for those demands. Thus, to maximize the
utility of DVFS, hardware and software function cooper-
atively and at very fine granularities.

Despite the ubiquity of energy management mecha-
nisms on commodity systems, security is rarely a consid-
eration in the design of these mechanisms. In the absence
of known attacks, given the complexity of hardware-
software interoperability needs and the pressure of cost
and time-to-market concerns, the designers of these
mechanisms have not given much attention to the secu-
rity aspects of these mechanisms; they have been focused
on optimizing the functional aspects of energy manage-
ment. These combination of factors along with the per-
vasiveness of these mechanisms makes energy manage-
ment mechanisms a potential source of security vulnera-
bilities and an attractive target for attackers.

In this work, we present the first security review of a
widely-deployed energy management technique, DVFS.
Based on careful examination of the interfaces between
hardware regulators and software drivers, we uncover
a new class of exploitation vector, which we term as
CLKSCREW. In essence, a CLKSCREW attack exploits
unfettered software access to energy management hard-
ware to push the operating limits of processors to the
point of inducing faulty computations. This is dangerous
when these faults can be induced from lower privileged
software across hardware-enforced boundaries, where
security sensitive computations are hosted.

USENIX Association 26th USENIX Security Symposium 1057

We demonstrate that CLKSCREW can be conducted
using no more than the software control of energy
management hardware regulators in the target devices.
CLKSCREW is more powerful than traditional physi-
cal fault attacks [19] for several reasons. Firstly, un-
like physical fault attacks, CLKSCREW enables fault at-
tacks to be conducted purely from software. Remote ex-
ploitation with CLKSCREW becomes possible without
the need for physical access to target devices. Secondly,
many equipment-related barriers, such as the need for
soldering and complex equipment, to achieve physical
fault attacks are removed. Lastly, since physical attacks
have been known for some time, several defenses, such
as special hardened epoxy and circuit chips that are hard
to access, have been designed to thwart such attacks. Ex-
tensive hardware reverse engineering may be needed to
determine physical pins on the devices to connect the
fault injection circuits [45]. CLKSCREW sidesteps all
these risks of destroying the target devices permanently.

To highlight the practical security impact of our attack,
we implement the CLKSCREW attack on a commodity
ARMv71 phone, Nexus 6. With only publicly available
knowledge of the Nexus 6 device, we identify the operat-
ing limits of the frequency and voltage hardware mecha-
nisms. We then devise software to enable the hardware to
operate beyond the vendor-recommended limits. Our at-
tack requires no further access beyond a malicious kernel
driver. We show how the CLKSCREW attack can sub-
vert the hardware-enforced isolation in ARM Trustzone
in two attack scenarios: (1) extracting secret AES keys
embedded within Trustzone and (2) loading self-signed
code into Trustzone. We note that the root cause for
CLKSCREW is neither a hardware nor a software bug:
CLKSCREW is achievable due to the fundamental design
of energy management mechanisms.

We have responsibly disclosed the vulnerabilities
identified in this work to the relevant SoC and device
vendors. They have been very receptive to the disclosure.
Besides acknowledging the highlighted issues, they were
able to reproduce the reported fault on their internal test
device within three weeks of the disclosure. They are
working towards mitigations.

In summary, we make the following contributions in
this work:

1. We expose the dangers of designing energy man-
agement mechanisms without security in mind by
introducing the concept of the CLKSCREW attack.
Aggressive energy-aware computing mechanisms
can be exploited to influence isolated computing.

2. We present the CLKSCREW attack to demonstrate a
new class of energy management-based exploitation

1As of Sep 2016, ARMv7 devices capture over 86% of the world-
wide market share of mobile phones [7].

vector that exploits software-exposed frequency and
voltage hardware regulators to subvert trusted com-
putation.

3. We introduce a methodology for examining and
demonstrating the feasibility of the CLKSCREW at-
tack against commodity ARM devices running a full
complex OS such as Android.

4. We demonstrate that the CLKSCREW attack can be
used to break the ARM Trustzone by extracting se-
cret cryptographic keys and loading self-signed ap-
plications on a commodity phone.

The remainder of the paper is organized as follows.
We provide background on DVFS and its associated
hardware and software support in § 2. In § 3, we de-
tail challenges and steps we take to achieving the first
CLKSCREW fault. Next, we present two attack case
studies in § 4 and § 5. Finally, we discuss countermea-
sures and related work in § 6, and conclude in § 7.

2 Background

In this section, we provide the required background in
energy management to understand CLKSCREW. We first
describe DVFS and how it relates to saving energy. We
then detail key classes of supporting hardware regulators
and their software-exposed interfaces.

2.1 Dynamic Voltage & Frequency Scaling

DVFS is an energy management technique that trades off
processing speed for energy savings. Since its debut in
1994 [60], DVFS has become ubiquitous in almost all
commodity devices. DVFS works by regulating two im-
portant runtime knobs that govern the amount of energy
consumed in a system – frequency and voltage.

To see how managing frequency and voltage can save
energy, it is useful to understand how energy consump-
tion is affected by these two knobs. The amount of en-
ergy2 consumed in a system is the product of power and
time, since it refers to the total amount of resources uti-
lized by a system to complete a task over time. Power3,
an important determinant of energy consumption, is di-
rectly proportional to the product of operating frequency
and voltage. Consequently, to save energy, many energy
management techniques focus on efficiently optimizing
both frequency and voltage.

2Formally, the total amount of energy consumed, ET , is the integral
of instantaneous dynamic power, Pt over time T : ET =

∫ T
0 Pt dt.

3In a system with a fixed capacitative load, at any time t, the instan-
taneous dynamic power is proportional to both the voltage, Vt and the
frequency Ft as follows: Pt ∝ V 2

t ×Ft .

1058 26th USENIX Security Symposium USENIX Association

daniel
Highlight

daniel
Highlight

daniel
Highlight

daniel
Highlight

daniel
Highlight

daniel
Highlight

daniel
Highlight

daniel
Highlight

SoC Processor
(Nexus 6)

SPM
(All cores)Core 0

Voltage
Control

Voltage Domain
(All cores)

PMA8084
PMIC

Voltage output
to cores

Input

Voltage output
to other peripherals

0
1
2
3

Core 0Core 0Core 0

Figure 1: Shared voltage regulator for all Krait cores.

DVFS regulates frequency and voltage according to
runtime task demands. As these demands can vary dras-
tically and quickly, DVFS needs to be able to track these
demands and effect the frequency and voltage adjust-
ments in a timely manner. To achieve this, DVFS re-
quires components across layers in the system stack. The
three primary components are (1) the voltage/frequency
hardware regulators, (2) vendor-specific regulator driver,
and (3) OS-level CPUfreq power governor [46]. The
combined need for accurate layer-specific feedback and
low voltage/frequency scaling latencies drives the preva-
lence of unfettered and software-level access to the fre-
quency and voltage hardware regulators.

2.2 Hardware Support for DVFS

Voltage Regulators. Voltage regulators supply power
to various components on devices, by reducing the volt-
age from either the battery or external power supply to a
range of smaller voltages for both the cores and the pe-
ripherals within the device. To support features, such as
camera and sensors that are sourced from different ven-
dors and hence operating at different voltages, numerous
voltage regulators are needed on devices. These regu-
lators are integrated within a specialized circuit called
Power Management Integrated Circuit (PMIC) [53].

Power to the application cores is typically supplied
by the step-down regulators within the PMIC on the
System-on-Chip (SoC) processor. As an example, Fig-
ure 1 shows the PMIC that regulates the shared voltage
supply to all the application cores (a.k.a. Krait cores) on
the Nexus 6 device. The PMIC does not directly ex-
pose software interfaces for controlling the voltage sup-
ply to the cores. Instead, the core voltages are indirectly
managed by a power management subsystem, called the
Subsystem Power Manager (SPM) [2]. The SPM is a
hardware block that maintains a set of control registers
which, when configured, interfaces with the PMIC to ef-
fect voltage changes. Privileged software like a kernel
driver can use these memory-mapped control registers

Clock
MUX Core

Clock Domain (per-core)

PLL
(fixed rate)

HFPLL
(variable rate)

Half
Divider

300 MHz

N * 19.2 MHz

N/2 * 19.2 MHz

N Multiplier Source Selector

0

1

2

SoC Processor
(Nexus 6)

Figure 2: Separate clock sources for each Krait core.

to direct voltage changes. We highlight these software-
exposed controls as yellow-shaded circles in Figure 1.

Frequency PLL-based Regulators. The operating fre-
quency of application cores is derived from the frequency
of the clock signal driving the underlying digital logic
circuits. The frequency regulator contains a Phase Lock
Loop (PLL) circuit, a frequency synthesizer built into
modern processors to generate a synchronous clock sig-
nal for digital components. The PLL circuit generates an
output clock signal of adjustable frequency, by receiving
a fixed-rate reference clock (typically from a crystal os-
cillator) and raising it based on an adjustable multiplier
ratio. The output clock frequency can then be controlled
by changing this PLL multiplier.

For example, each core on the Nexus 6 has a dedicated
clock domain. As such, the operating frequency of each
core can be individually controlled. Each core can oper-
ate on three possible clock sources. In Figure 2, we illus-
trate the clock sources as well as the controls (shaded in
yellow) exposed to the software from the hardware reg-
ulators. A multiplexer (MUX) is used to select amongst
the three clock sources, namely (1) a PLL supplying a
fixed-rate 300-MHz clock signal, (2) a High-Frequency
PLL (HFPLL) supplying a clock signal of variable fre-
quency based on a N multiplier, and (3) the same HFPLL
supplying half the clock signal via a frequency divider
for finer-grained control over the output frequency.

As shown in Figure 2, the variable output frequency of
the HFPLL is derived from a base frequency of 19.2MHz
and can be controlled by configuring the N multiplier.
For instance, to achieve the highest core operating fre-
quency of 2.65GHz advertised by the vendor, one needs
to configure the N multiplier to 138 and the Source Se-
lector to 1 to select the use of the full HFPLL. Similar
to changing voltage, privileged software can initiate per-
core frequency changes by writing to software-exposed
memory-mapped PLL registers, shown in Figure 2.

USENIX Association 26th USENIX Security Symposium 1059

daniel
Highlight

daniel
Highlight

daniel
Highlight

daniel
Highlight

daniel
Highlight

daniel
Highlight

daniel
Highlight

daniel
Highlight

daniel
Highlight

daniel
Highlight

daniel
Highlight

daniel
Highlight

daniel
Highlight

daniel
Highlight

daniel
Highlight

daniel
Highlight

daniel
Highlight

daniel
Highlight

daniel
Highlight

daniel
Highlight

daniel
Highlight

2.3 Software Support for DVFS

On top of the hardware regulators, additional software
support is needed to facilitate DVFS. Studying these sup-
porting software components for DVFS enables us to
better understand the interfaces provided by the hard-
ware regulators. Software support for DVFS comprises
two key components, namely vendor-specific regulator
drivers and OS-level power management services.

Besides being responsible for controlling the hardware
regulators, the vendor-provided PMIC drivers [5, 6] also
provide a convenient means for mechanisms in the up-
per layers of the stack, such as the Linux CPUfreq power
governor [46] to dynamically direct the voltage and fre-
quency scaling. DVFS requires real-time feedback on
the system workload profile to guide the optimization
of performance with respect to power dissipation. This
feedback may rely on layer-specific information that may
only be efficiently accessible from certain system layers.
For example, instantaneous system utilization levels are
readily available to the OS kernel layer. As such, the
Linux CPUfreq power governor is well-positioned at that
layer to initiate runtime changes to the operating voltage
and frequency based on these whole-system measures.
This also provides some intuition as to why DVFS can-
not be implemented entirely in hardware.

3 Achieving the First CLKSCREW Fault

In this section, we first briefly describe why erroneous
computation occurs when frequency and voltage are
stretched beyond the operating limits of digital circuits.
Next, we outline challenges in conducting a non-physical
probabilistic fault injection attack induced from soft-
ware. Finally, we characterize the operating limits of
regulators and detail the steps to achieving the first
CLKSCREW fault on a real device.

3.1 How Timing Faults Occur

To appreciate why unfettered access to hardware regula-
tors is dangerous, it is necessary to understand in general
why over-extending frequency (a.k.a. overclocking) or
under-supplying voltage (a.k.a. undervolting) can cause
unintended behavior in digital circuits.

Synchronous digital circuits are made up of mem-
ory elements called flip-flops (FF). These flip-flops store
stateful data for digital computation. A typical flip-flop
has an input D, and an output Q, and only changes the
output to the value of the input upon the receipt of the
rising edge of the clock (CLK) signal. In Figure 3, we
show two flip-flops, FFsrc and FFdst sharing a com-
mon clock signal and some intermediate combinatorial

TFF

common
clock signal

provider

clk

...input output

clk

FFsrc FFdst

... ...

Dsrc Qsrc QdstDdst

Intermediate
combinatorial logic

clock pulse

input (0 1)

Qsrc

Ddst

output (0 1)

1

Tclk

Tmax_path

0

1

0

1

0

1

0

1

0

TFF
Tsetup

common clock
signal

Figure 3: Timing constraint for error-free data propaga-
tion from input Qsrc to output Ddst for entire circuit.

logic elements. These back-to-back flip-flops are build-
ing blocks for pipelines, which are pervasive throughout
digital chips and are used to achieve higher performance.
Circuit timing constraint. For a single flip-flop to
properly propagate the input to the output locally, there
are three key timing sub-constraints. (1) The incoming
data signal has to be held stable for T setup during the re-
ceipt of the clock signal, and (2) the input signal has to be
held stable for T FF within the flip-flop after the clock sig-
nal arrives. (3) It also takes a minimum of T max_path for
the output Qsrc of FFsrc to propagate to the input Ddst of
FFdst. For the overall circuit to propagate input Dsrc →
output Qdst, the minimum required clock cycle period4,
T clk, is bounded by the following timing constraint (1)
for some microarchitectural constant K:

T clk ≥ T FF +T max_path +T setup +K (1)

Violation of timing constraint. When the timing con-
straint is violated during two consecutive rising edges
of the clock signal, the output from the source flip-flop
FFsrc fails to latch properly in time as the input at the
destination flip-flop FFdst. As such, the FFdst continues
to operate with stale data. There are two situations where
this timing constraint can be violated, namely (a) over-
clocking to reduce T clk and (b) undervolting to increase
the overall circuit propagation time, thereby increasing
Tmax_path. Figure 4 illustrates how the output results in
an unintended erroneous value of 0 due to overclocking.
For comparison, we show an example of a bit-level fault
due to undervolting in Figure 15 in Appendix A.1.

4T clk is simply the reciprocal of the clock frequency.

1060 26th USENIX Security Symposium USENIX Association

daniel
Highlight

daniel
Highlight

daniel
Highlight

daniel
Highlight

daniel
Highlight

clock pulse

input (0 1)

Qsrc

Ddst

output (0 0)

1

Tclk’

Tmax_path

0

1

0

1

0

1

0

1

0

Tsetup TFF

glitched
output

0

Figure 4: Bit-level fault due to overclocking: Reducing
clock period T clk → T clk

′ results in a bit-flip in output
1→ 0.

3.2 Challenges of CLKSCREW Attacks

Mounting a fault attack purely from software on a real-
world commodity device using its internal voltage/fre-
quency hardware regulators has numerous difficulties.
These challenges are non-existent or vastly different
from those in traditional physical fault attacks (that com-
monly use laser, heat and radiation).

Regulator operating limits. Overclocking or under-
volting attacks require the hardware to be configured far
beyond its vendor-suggested operating range. Do the op-
erating limits of the regulators enable us to effect such
attacks in the first place? We show that this is feasible
in § 3.3.

Self-containment within same device. Since the attack
code performing the fault injection and the victim code to
be faulted both reside on the same device, the fault attack
must be conducted in a manner that does not affect the
execution of the attacking code. We present techniques
to overcome this in § 3.4.

Noisy complex OS environment. On a full-fledged OS
with interrupts, we need to inject a fault into the tar-
get code without causing too much perturbation to non-
targeted code. We address this in § 3.4.

Precise timing. To attack the victim code, we need to
be relatively precise in when the fault is induced. Using
two attack scenarios that require vastly different degrees
of timing precision in § 4 and § 5, we demonstrate how
the timing of the fault can be fine-tuned using a range of
execution profiling techniques.

Fine-grained timing resolution. The fault needs to be
transient enough to occur during the intended region of
victim code execution. We may need the ability to tar-
get a specific range of code execution that takes orders
of magnitude fewer clock cycles within an entire oper-

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
Voltage (V)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

F
re

q
u
e
n
cy

 (
G

H
z)

Nexus 6

Maximum OPP

Vendor stock OPP

Figure 5: Vendor-stipulated voltage/frequency Operat-
ing Performance Points (OPPs) vs. maximum OPPs
achieved before computation fails.

ation. For example, in the attack scenario described in
Section § 5.3, we seek to inject a fault into a memory-
specific operation that takes roughly 65,000 clock cycles
within an entire RSA certificate chain verification opera-
tion spanning over 1.1 billion cycles.

3.3 Characterization of Regulator Limits

In this section, we study the capabilities and limits of
the built-in hardware regulators, focusing on the Nexus
6 phone. According to documentation from the vendor,
Nexus 6 features a 2.7GHz quad-core SoC processor. On
this device, DVFS is configured to operate only in one
of 15 possible discrete5 Operating Performance Points
(OPPs) at any one time, typically by a DVFS OS-level
service. Each OPP represents a state that the device can
be in with a voltage and frequency pair. These OPPs are
readily available from the vendor-specific definition file,
apq8084.dtsi, from the kernel source code [3].

To verify that the OPPs are as advertised, we need
measurement readings of the operating voltage and fre-
quency. By enabling the debugfs feature for the reg-
ulators, we can get per-core voltage6 and frequency7

measurements. We verify that the debugfs measurement
readings indeed match the voltage and frequency pairs
stipulated by each OPP. We plot these vendor-provided
OPP measurements as black-star symbols in Figure 5.

No safeguard limits in hardware. Using the software-
exposed controls described in § 2.2, while maintaining a
low base frequency of 300MHz, we configure the volt-
age regulator to probe for the range during which the de-

5A limited number of discrete OPPs, instead of a range of continu-
ous voltage/frequency values, is used so that the time taken to validate
the configured OPPs at runtime is minimized.

6/d/regulator/kraitX/voltage
7/d/clk/kraitX_clk/measure

USENIX Association 26th USENIX Security Symposium 1061

vice remains functional. We find that when the device
is set to any voltage outside the range 0.6V to 1.17V, it
either reboots or freezes. We refer to the phone as be-
ing unstable when these behaviors are observed. Then,
stepping through 5mV within the voltage range, for each
operating voltage, we increase the clock frequency until
the phone becomes unstable. We plot each of these max-
imum frequency and voltage pair (as shaded circles) to-
gether with the vendor-stipulated OPPs (as shaded stars)
in Figure 5. It is evident that the hardware regulators
can be configured past the vendor-recommended limits.
This unfettered access to the regulators offers a powerful
primitive to induce a software-based fault.

ATTACK ENABLER (GENERAL) #1: There are no safe-
guard limits in the hardware regulators to restrict the
range of frequencies and voltages that can be configured.

Large degree of freedom for attacker. Figure 5 illus-
trates the degree of freedom an attacker has in choos-
ing the OPPs that have the potential to induce faults.
The maximum frequency and voltage pairs (i.e. shaded
circles in Figure 5) form an almost continuous upward-
sloping curve. It is noteworthy that all frequency and
voltage OPPs above this curve represent potential candi-
date values of frequency and voltage that an attacker can
use to induce a fault.

This “shaded circles” curve is instructive in two ways.
First, from the attacker’s perspective, the upward-sloping
nature of the curve means that reducing the operating
voltage simultaneously lowers the minimum required
frequency needed to induce a fault in an attack. For ex-
ample, suppose an attacker wants to perform an over-
clocking attack, but the frequency value she needs to
achieve the fault is beyond the physical limit of the fre-
quency regulator. With the help of this frequency/voltage
characteristic, she can then possibly reduce the operating
voltage to the extent where the overclocking frequency
required is within the physical limit of the regulator.

ATTACK ENABLER (GENERAL) #2: Reducing the op-
erating voltage lowers the minimum required frequency
needed to induce faults.

Secondly, from the defender’s perspective, the large
range of instability-inducing OPPs above the curve sug-
gests that limits of both frequency and voltage, if any,
must be enforced in tandem to be effective. Combination
of frequency and voltage values, while individually valid,
may still cause unstable conditions when used together.
Prevalence of Regulators. The lack of safeguard lim-
its within the regulators is not specific to Nexus 6. We
observe similar behaviors in devices from other ven-
dors. For example, the frequency/voltage regulators in

Corevictim

Coreattack

...

...

Victim
thread

Attack
thread

Prep Phase Attack Phase

1

Targeted subset of
entire victim execution

2
Clearing
residual
states

Profiling

3 Timing
anchor

4 Pre-delay
5

Fault

6

Figure 6: Overview of CLKSCREW fault injection setup.

the Nexus 6P and Pixel phones can also be configured be-
yond their vendor-stipulated limits to the extent of seeing
instability on the devices. We show the comparison of
the vendor-recommended and the actual observed OPPs
of these devices in Figures 16 and 17 in Appendix A.3.

3.4 Containing the Fault within a Core
The goal of our fault injection attack is to induce errors
to specific victim code execution. The challenge is doing
so without self-faulting the attack code and accidentally
attacking other non-targeted code.

We create a custom kernel driver to launch separate
threads for the attack and victim code and to pin each
of them to separate cores. Pinning the attack and vic-
tim code in separate cores automatically allows each of
them to execute in different frequency domains. This
core pinning strategy is possible due to the deployment
of increasingly heterogeneous processors like the ARM
big.LITTLE [12] architecture, and emerging technolo-
gies such as Intel PCPS [35] and Qualcomm aSMP [48].
The prevailing industry trend of designing finer-grained
energy management favors the use of separate frequency
and voltage domains across different cores. In particular,
the Nexus 6 SoC that we use in our attack is based on a
variant of the aSMP architecture. With core pinning, the
attack code can thus manipulate the frequency of the core
that the victim code executes on, without affecting that
of the core the attack code is running on. In addition to
core pinning, we also disable interrupts during the entire
victim code execution to ensure that no context switch
occurs for that core. These two measures ensure that our
fault injection effects are contained within the core that
the target victim code is running on.

ATTACK ENABLER (GENERAL) #3: The deployment
of cores in different voltage/frequency domains isolates
the effects of cross-core fault attack.

3.5 CLKSCREW Attack Steps
The CLKSCREW attack is implemented with a kernel
driver to attack code that is executing at a higher priv-

1062 26th USENIX Security Symposium USENIX Association

Parameter Description

Fvolt Base operating voltage
Fpdelay Number of loops to delay/wait before the fault
Ffreq_hi Target value to raise the frequency to for the fault
Ffreq_lo Base value to raise the frequency from for the fault
Fdur Duration of the fault in terms of number of loops

Table 1: CLKSCREW fault injection parameters.

ilege than the kernel. Examples of such victim code are
applications running within isolation technologies such
as ARM Trustzone [11] and Intel SGX [9]. In Figure 6,
we illustrate the key attack steps within the thread ex-
ecution of the attack and victim code. The goal of the
CLKSCREW attack is to induce a fault in a subset of an
entire victim thread execution.

1 Clearing residual states. Before we attack the vic-
tim code, we want to ensure that there are no microarchi-
tectural residual states remaining from prior executions.
Since we are using a cache-based profiling technique in
the next step, we want to make sure that the caches do
not have any residual data from non-victim code before
each fault injection attempt. To do so, we invoke both
the victim and attack threads in the two cores multiple
times in quick succession. From experimentation, 5-10
invocations suffice in this preparation phase.

2 / 3 Profiling for an anchor. Since the victim code
execution is typically a subset of the entire victim thread
execution, we need to profile the execution of the victim
thread to identify a consistent point of execution just be-
fore the target code to be faulted. We refer to this point
of execution as a timing anchor, T anchor to guide when
to deliver the fault injection. Several software profiling
techniques can be used to identify this timing anchor. In
our case, we rely on instruction or data cache profiling
techniques in recent work [40].

4 Pre-fault delaying. Even with the timing anchor, in
some attack scenarios, there may still be a need to fine-
tune the exact delivery timing of the fault. In such cases,
we can configure the attack thread to spin-loop with a
predetermined number of loops before inducing the ac-
tual fault. The use of these loops consisting of no-op
operations is essentially a technique to induce timing de-
lays with high precision. For this stage of the attack, we
term this delay before inducing the fault as Fpdelay.

5 / 6 Delivering the fault. Given a base operating
voltage Fvolt, the attack thread will raise the frequency of
the victim core (denoted as F freq_hi), keep that frequency
for Fdur loops, and then restore the frequency to F freq_lo.

To summarize, for a successful CLKSCREW attack,
we can characterize the attacker’s goal as the following
sub-tasks. Given a victim code and a fault injection tar-

Voltage and Frequency Regulators

Trusted mode Normal mode
(Insecure)

Core0

Trusted
code

Untrusted
code

Hardware-enforced
isolation

Regulator
HW-SW interface

voltage/frequency changes

Shared power domain

Figure 7: Regulators operate across security boundaries.

get point determined by T anchor, the attacker has to find
optimal values for the following parameters to maximize
the odds of inducing the desired fault. We summarize the
fault injection parameters required in Table 1.

Fθ |T anchor
= {Fvolt, Fpdelay, F freq_hi, Fdur, F freq_lo}

3.6 Isolation-Agnostic DVFS
To support execution of trusted code isolated from un-
trusted one, two leading industry technologies, ARM
Trustzone [11] and Intel SGX [9], are widely deployed.
They share a common characteristic in that they can
execute both trusted and untrusted code on the same
physical core, while relying on architectural features
such as specialized instructions to support isolated exe-
cution. It is noteworthy that on such architectures, the
voltage and frequency regulators typically operate on
domains that apply to cores as a whole (regardless of
the security-sensitive processor execution modes), as de-
picted in Figure 7. With this design, any frequency or
voltage change initiated by untrusted code inadvertently
affects the trusted code execution, despite the hardware-
enforced isolation. This, as we show in subsequent sec-
tions, poses a critical security risk.

ATTACK ENABLER (GENERAL) #4: Hardware regula-
tors operate across security boundaries with no physical
isolation.

4 TZ Attack #1: Inferring AES Keys

In this section, we show how AES [43] keys stored
within Trustzone (TZ) can be inferred by lower-
privileged code from outside Trustzone, based on the
faulty ciphertexts derived from the erroneous AES en-
cryption operations. Specifically, it shows how lower-
privileged code can subvert the isolation guarantee by
ARM Trustzone, by influencing the computation of
higher-privileged code using the energy management

USENIX Association 26th USENIX Security Symposium 1063

mechanisms. The attack shows that the confidentiality
of the AES keys that should have been kept secure in
Trustzone can be broken.

Threat model. In our victim setup, we assume that there
is a Trustzone app that provisions AES keys and stores
these keys within Trustzone, inaccessible from the non-
Trustzone (non-secure) environment. The attacker can
repeatedly invoke the Trustzone app from the non-secure
environment to decrypt any given ciphertext, but is re-
stricted from reading the AES keys directly from Trust-
zone memory due to hardware-enforced isolation. The
attacker’s goal is to infer the AES keys stored.

4.1 Trustzone AES Decryption App

For this case study, since we do not have access to a
real-world AES app within Trustzone, we rely on a text-
book implementation of AES as the victim app. We
implement a AES decryption app that can be loaded
within Trustzone. Without loss of generality, we re-
strict the decryption to 128-bit keys, operating on 16-
bit plaintext and ciphertext. A single 128-bit encryp-
tion/decryption operation comprises 10 AES rounds,
each of which is a composition of the four canon-
ical sub-operations, named SubBytes, ShiftRows,
MixColumns and AddRoundKey [43].

To load this app into Trustzone as our victim pro-
gram, we use a publicly known Trustzone vulnerabil-
ity [17] to overwrite an existing Trustzone syscall han-
dler, tzbsp_es_is_activated, on our Nexus 6 device
running an old firmware8. A non-secure app can then ex-
ecute this syscall via an ARM Secure Monitor Call [26]
instruction to invoke our decryption Trustzone app. This
vulnerability serves the sole purpose of allowing us to
load the victim app within Trustzone to simulate a AES
decryption app in Trustzone. It plays no part in the at-
tacker’s task of interest – extracting the cryptographic
keys stored within Trustzone. Having the victim app ex-
ecute within Trustzone on a commodity device allows us
to evaluate CLKSCREW across Trustzone-enforced se-
curity boundaries in a practical and realistic manner.

4.2 Timing Profiling

As described in § 3.5, one of the crucial attack steps to
ensure reliable delivery of the fault to a victim code ex-
ecution is finding ideal values of Fpdelay. To guide this
parameter discovery process, we need the timing profile
of the Trustzone app performing a single AES encryp-
tion/decryption operation. ARM allows the use of hard-
ware cycle counter (CCNT) to track the execution dura-
tion (in clock cycles) of Trustzone applications [10]. We

8Firmware version is shamu MMB29Q (Feb, 2016)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
CCNTtarget (in clock cycles) 1e6

0

1

2

3

4

5

6

N
o
rm

a
liz

e
d
 f

re
q
u
e
n
cy

1e−5 Target thread

1.0 1.5 2.0 2.5 3.0 3.5 4.0
of pre-fault delay loops, Fpdelay1e5

2

3

4

5

6

7

8

9

C
C
N
T
a
tt
a
ck

 (
in

 c
lo

ck
 c

y
cl

e
s)

1e5 Attack thread

Figure 8: Execution duration (in clock cycles) of the vic-
tim and attack threads.

enable this cycle counting feature within our custom ker-
nel driver. With this feature, we can now measure how
long it takes for our Trustzone app to decrypt a single
ciphertext, even from the non-secure world.

ATTACK ENABLER (TZ-SPECIFIC) #5: Execution tim-
ing of code running in Trustzone can be profiled with
hardware counters that are accessible outside Trustzone.

Using the hardware cycle counter, we track the dura-
tion of each AES decryption operation over about 13k in-
vocations in total. Figure 8 (left) shows the distribution
of the execution length of an AES operation. Each op-
eration takes an average of 840k clock cycles with more
than 80% of the invocations taking between 812k to 920k
cycles. This shows that the victim thread does not exhibit
too much variability in terms of its execution time.

Recall that we want to deliver a fault to specific region
of the victim code execution and that the faulting param-
eter Fpdelay allows us to fine-tune this timing. Here, we
evaluate the degree to which the use of no-op loops is
useful in controlling the timing of the fault delivery. Us-
ing a fixed duration for the fault Fdur, we measure how
long the attack thread takes in clock cycles for different
values of the pre-fault delays Fpdelay. Figure 8 (right)
illustrates a distinct linear relationship between Fpdelay
and the length of the attack thread. This demonstrates
that number of loops used in Fpdelay is a reasonably good
proxy for controlling the execution timing of threads, and
thus the timing of our fault delivery.

4.3 Fault Model
To detect if a fault is induced in the AES decryption, we
add a check after the app invocation to verify that the de-
crypted plaintext is as expected. Moreover, to know ex-
actly which AES round got corrupted, we add minimal
code to track the intermediate states of the AES round
and return this as a buffer back to the non-secure environ-
ment. A comparison of the intermediate states and their
expected values will indicate the specific AES round that

1064 26th USENIX Security Symposium USENIX Association

1 2 3 4 5 6 7 8
of faulted AES rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
N

o
rm

a
liz

e
d
 f

re
q
u
e
n
cy

1 3 5 7 9 11 13 15
of faulted bytes within one round

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
o
rm

a
liz

e
d
 f

re
q
u
e
n
cy

Figure 9: Fault model: Characteristics of observed faults
induced by CLKSCREW on AES operation.

is faulted and the corrupted value. With these validation
checks in place, we perform a grid search for the param-
eters for the faulting frequency, F freq_hi and the duration
of the fault, Fdur that can induce erroneous AES decryp-
tion results. From our empirical trials, we found that the
parameters F freq_hi = 3.69GHz and Fdur = 680 can most
reliably induce faults to the AES operation.

For the rest of this attack, we assume the use of these
two parameter values. By varying Fpdelay, we investigate
the characteristics of the observed faults. A total of about
360 faults is observed. More than 60% of the faults are
precise enough to affect exactly one AES round, as de-
picted in Figure 9 (left). Furthermore, out of these faults
that induce corruption in one AES round, more than half
are sufficiently transient to cause random corruptions of
exactly one byte, shown in Figure 9 (right). Being able to
induce a one-byte random corruption to the intermediate
state of an AES round is often used as a fault model in
several physical fault injection works [18, 56].

4.4 Putting it together

Removing use of time anchor. Recall from § 3.5 that
CLKSCREW may require profiling for a time anchor to
improve faulting precision. In this attack, we choose not
to do so, because (1) the algorithm of the AES operation
is fairly straightforward (one KeyExpansion round, fol-
lowed by 10 AES rounds [43]) to estimate Fpdelay, and
(2) the execution duration of the victim thread does not
exhibit too much variability. The small degree of vari-
ability in the execution timing of both the attack and vic-
tim threads allows us to reasonably target specific AES
rounds with a maximum error margin of one round.

Differential fault attack. Tunstall et al. present a dif-
ferential fault attack (DFA) that infers AES keys based
on pairs of correct and faulty ciphertext [56]. Since AES
encryption is symmetric, we leverage their attack to infer
AES keys based on pairs of correct and faulty plaintext.
Assuming a fault can be injected during the seventh AES
round to cause a single-byte random corruption to the

0.0 0.2 0.4 0.6 0.8 1.0

Cycle length ratio: CCNTattack=CCNTtarget

0

1

2

3

4

5

6

7

8

9

10

C
o
rr

u
p
te

d
 A

E
S
 r

o
u
n
d

Figure 10: Controlling pre-fault delay, Fpdelay, allows us
to control which AES round the fault affects.

intermediate state in that round, with a corrupted input
to the eighth AES round, this DFA can reduce the num-
ber of AES-128 key hypotheses from the original 2128 to
212, in which case the key can be brute-forced in a trivial
exhaustive search. We refer readers to Tunstall et al.’s
work [56] for a full cryptanalysis for this fault model.
Degree of control of attack. To evaluate the degree of
control we have over the specific round we seek to in-
ject the fault in, we induce the faults using a range of
Fpdelay and track which AES rounds the faults occur in.
In Figure 10, each point represents a fault occurring in
a specific AES round and when that fault occurs during
the entire execution of the victim thread. We use the ratio
of CCNT attack/CCNT target as an approximation of latter.
There are ten distinct clusters of faults corresponding to
each AES round. Since CCNT target can be profiled be-
forehand and CCNT attack is controllable via the use of
Fpdelay, an attacker is able to control which AES round
to deliver the fault to for this attack.
Actual attack. Given the faulting parameters,
Fθ , AES-128 = {Fvolt = 1.055V, Fpdelay = 200k, F freq_hi =
3.69GHz, Fdur = 680, F freq_lo = 2.61GHz}, it took, on
average, 20 faulting attempts to induce a one-byte fault to
the input to the eighth AES round. Given the pair of this
faulty plaintext and the expected one, it took Tunstall et
al.’s DFA algorithm about 12 minutes on a 2.7GHz quad-
core CPU to generate 3650 key hypotheses, one out of
which is the AES key stored within Trustzone.

5 TZ Attack #2: Loading Self-Signed Apps

In this case study, we show how CLKSCREW can sub-
vert the RSA signature chain verification – the primary
public-key cryptographic method used for authenticating
the loading of firmware images into Trustzone. ARM-
based SoC processors use the ARM Trustzone to provide
a secure and isolated environment to execute security-
critical applications like DRM widevine [28] trustlet9 and

9Apps within Trustzone are sometimes referred to as trustlets.

USENIX Association 26th USENIX Security Symposium 1065

Algorithm 1 Given public key modulus N and exponent
e, decrypt a RSA signature S. Return plaintext hash, H.

1: procedure DECRYPTSIG(S, e, N)
2: r← 22048

3: R← r2 mod N
4: Nrev← FLIPENDIANNESS(N)
5: r−1←MODINVERSE(r, Nrev)
6: f ound_ f irst_one_bit← f alse
7: for i ∈ {bitlen(e)−1 .. 0} do
8: if f ound_ f irst_one_bit then
9: x←MONTMULT(x, x, Nrev, r−1)

10: if e[i] == 1 then
11: x←MONTMULT(x, a, Nrev, r−1)
12: end if
13: else if e[i] == 1 then
14: Srev← FLIPENDIANNESS(S)
15: x←MONTMULT(Srev, R, Nrev, r−1)
16: a← x
17: f ound_ f irst_one_bit← true
18: end if
19: end for
20: x←MONTMULT(x, 1, Nrev, r−1)
21: H← FLIPENDIANNESS(x)
22: return H
23: end procedure

key management keymaster [27] trustlet. These vendor-
specific firmware are subject to regular updates. These
firmware update files consist of the updated code, a sig-
nature protecting the hash of the code, and a certificate
chain. Before loading these signed code updates into
Trustzone, the Trusted Execution Environment (TEE)
authenticates the certificate chain and verifies the in-
tegrity of the code updates [49].

RSA Signature Validation. In the RSA cryptosystem
[51], let N denote the modulus, d denote the private ex-
ponent and e denote the public exponent. In addition,
we also denote the SHA-256 hash of code C as H(C)
for the rest of the section. To ensure the integrity and
authenticity of a given code blob C, the code originator
creates a signature Sig with its RSA private key: Sig←
(H(C))d mod N. The code blob is then distributed to-
gether with the signature and a certificate containing the
signing modulus N. Subsequently, the code blob C can
be authenticated by verifying that the hash of the code
blob matches the plaintext decrypted from the signature
using the public modulus N: Sige mod N == H(C). The
public exponent is typically hard-coded to 0x10001; only
the modulus N is of interest here.

Threat model. The goal of the attacker is to provide
an arbitrary attack app with a self-signed signature and
have the TEE successfully authenticate and load this
self-signed app within Trustzone. To load apps into
Trustzone, the attackers can invoke the TEE to authen-

ticate and load a given app into Trustzone using the
QSEOS_APP_START_COMMAND [4] Secure Channel Man-
ager10 command. The attacker can repeatedly invoke this
operation, but only from the non-secure environment.

5.1 Trustzone Signature Authentication
To formulate a CLKSCREW attack strategy, we first ex-
amine how the verification of RSA signatures is im-
plemented within the TEE. This verification mechanism
is implemented within the bootloader firmware. For
the Nexus 6 in particular, we use the shamu-specific
firmware image (MOB31S, dated Jan 2017 [1]), down-
loaded from the Google firmware update repository.

The RSA decryption function used in the signature
verification is the function, DECRYPTSIG11, summarized
in Algorithm 1. At a high level, DECRYPTSIG takes, as
input, a 2048-bit signature and the public key modulus,
and returns the decrypted hash for verification. For ef-
ficient modular exponentiation, DECRYPTSIG uses the
function MONTMULT to perform Montgomery multipli-
cation operations [38,44]. MONTMULT performs Mont-
gomery multiplication of two inputs x and y with respect
to the Montgomery radix, r [38] and modulus N as fol-
lows: MONTMULT(x, y, N, r−1)← x · y · r−1 mod N.

In addition to the use of MONTMULT, DECRYPTSIG
also invokes the function, FLIPENDIANNESS12, multiple
times at lines 4, 14 and 21 of Algorithm 1 to reverse the
contents of memory buffers. FLIPENDIANNESS is re-
quired in this implementation of DECRYPTSIG because
the inputs to DECRYPTSIG are big-endian while MONT-
MULT operates on little-endian inputs. For reference, we
outline the implementation of FLIPENDIANNESS in Al-
gorithm 2 in Appendix A.2.

5.2 Attack Strategy and Cryptanalysis

Attack overview. The overall goal of the attack is to de-
liver a fault during the execution of DECRYPTSIG such
that the output of DECRYPTSIG results in the desired
hash H(CA) of our attack code CA. This operation can be
described by Equation 2, where the attacker has to sup-
ply an attack signature S

′
A , and fault the execution of DE-

CRYPTSIG at runtime so that DECRYPTSIG outputs the
intended hash H(CA). For comparison, we also describe
the typical decryption operation of the original signature
S to the hash of the original code blob, C in Equation 3.

Attack : DECRYPTSIG(S
′

A , e, N)
f ault−−−→ H(CA) (2)

Original : DECRYPTSIG(S, e, N)−−→ H(C) (3)

10This is a vendor-specific interface that allows the non-secure world
to communicate with the Trustzone secure world.

11DECRYPTSIG loads at memory address 0xFE8643C0.
12FLIPENDIANNESS loads at memory address 0xFE868B20

1066 26th USENIX Security Symposium USENIX Association

For a successful attack, we need to address two ques-
tions: (a) At which portion of the runtime execution of
DECRYPTSIG(S

′
A , e, N) do we inject the fault? (b) How

do we craft S
′

A to be used as an input to DECRYPTSIG?

5.2.1 Where to inject the runtime fault?

Target code of interest. The fault should target op-
erations that manipulate the input modulus N, and ide-
ally before the beginning of the modular exponentiation
operation. A good candidate is the use of the function
FLIPENDIANNESS at Line 4 of Algorithm 1. From ex-
perimentation, we find that FLIPENDIANNESS is espe-
cially susceptible to CLKSCREW faults. We observe that
N can be corrupted to a predictable NA as follows:

NA,rev
f ault←−−− FLIPENDIANNESS(N)

Since NA,rev is NA in reverse byte order, for brevity, we
refer to NA,rev as NA for the rest of the section.
Factorizable NA. Besides being able to fault N to NA,
another requirement is that NA must be factorizable. Re-
call that the security of the RSA cryptosystem depends
on the computational infeasibility of factorizing the mod-
ulus N into its two prime factors, p and q [21]. This
means that with the factors of NA, we can derive the
corresponding keypair {NA, dA, e} using the Carmichael
function in the procedure that is described in Razavi et
al.’s work [50]. With this keypair {NA, dA, e}, the hash
of the attack code CA can then be signed to obtain the
signature of the attack code, SA← (H(CA))

dA mod NA.
We expect the faulted NA to be likely factorizable due

to two reasons: (a) NA is likely a composite number of
more than two prime factors, and (b) some of these fac-
tors are small. With sufficiently small factors of up to
60 bits, we use Pollard’s ρ algorithm to factorize NA
and find them [42]. For bigger factors, we leverage
the Lenstra’s Elliptic Curve factorization Method (ECM)
that has been observed to factor up to 270 bits [39]. Note
that all we need for the attack is to find a single NA that
is factorizable and reliably reproducible by the fault.

5.2.2 How to craft the attack signature S
′

A ?

Before we begin the cryptanalysis, we note that the attack
signature S

′
A (an input to DECRYPTSIG) is not the signed

hash of the attack code, SA (private-key encryption of the
H(CA)). We use S

′
A instead of SA primarily due to the

pecularities of our implementation. Specifically, this is
because the operations that follow the injection of the
fault also use the parameter values derived before the
point of injected fault. Next, we sketch the cryptanal-
ysis of delivering a fault to DECRYPTSIG to show how
the desired S

′
A is derived, and demonstrate why S

′
A is not

trivially derived the same way as SA.

Cryptanalysis. The goal is to derive S
′

A (as input to
DECRYPTSIG) given an expected corrupted modulus NA,
the original vendor’s modulus N, and the signature of the
attack code, SA. For brevity, all line references in this
section refer to Algorithm 1. The key observation is that
after being derived from FLIPENDIANNESS at Line 4,
Nrev is next used by MONTMULT at Line 15. Line 15
marks the beginning of the modular exponentiation of
the input signature, and thus, we focus our analysis here.

First, since we want DECRYPTSIG(S
′

A , e, N) to result
in H(CA) as dictated by Equation 2, we begin by ana-
lyzing the invocation of DECRYPTSIG that will lead to
H(CA). If we were to run DECRYPTSIG with inputs SA
and NA, DECRYPTSIG(SA, e, NA) should output H(CA).
Based on the analysis of this invocation of DECRYPTSIG,
we can then characterize the output, xdesired , of the oper-
ation at Line 15 of DECRYPTSIG(SA, e, NA) with Equa-
tion 4. We note that the modular inverse of r is computed
based on NA at Line 5, and so we denote this as r−1

A .

xdesired ← SA · (r2 mod NA) · r−1
A mod NA (4)

Next, suppose our CLKSCREW fault is delivered in
the operation DECRYPTSIG(S

′
A , e, N) such that N is cor-

rupted to NA at Line 4. We note that while N is faulted
to NA at Line 4, subsequent instructions continue to in-
directly use the original modulus N because R is derived
based on the uncorrupted modulus N at Line 3. Herein
lies the complication. The attack signature S

′
A passed

into DECRYPTSIG gets converted to the Montgomery
representation at Line 15, where both moduli are used:

x f ault ←MONTMULT(S
′

A , r2 mod N, NA, r−1
A)

We can then characterize the output, x f ault , of
the operation at the same Line 15 of a faulted
DECRYPTSIG(S

′
A , e, N) as follows:

x f ault ← S
′

A · (r2 mod N) · r−1
A mod NA (5)

By equating x f ault = xdesired (i.e. equating results from
(4) and (5)), we can reduce the problem to finding S

′
A for

constants K = (r2 mod N) · r−1
A and xdesired , such that:

S
′

A ·K mod NA ≡ xdesired mod NA

Finally, subject to the condition that xdesired is divis-
ible13 by the greatest common divisor of K and NA, de-
noted as gcd(K, NA), we use the Extended Euclidean Al-
gorithm14 to solve for the attack signature S

′
A , since there

exists a constant y such that S
′

A ·K + y ·NA = xdesired . In
summary, we show that the attack signature S

′
A (to be

used as an input to DECRYPTSIG(S
′

A , e, N)) can be de-
rived from N, NA and SA.

13We empirically observe that gcd(K, NA) = 1 in our experiments,
thus making xdesired trivially divisible by gcd(K, NA) for our purpose.

14The Extended Euclidean Algorithm is commonly used to compute,
besides the greatest common divisor of two integers a and b, the inte-
gers x and y where ax+by = gcd(a, b).

USENIX Association 26th USENIX Security Symposium 1067

5.3 Timing Profiling

Each trustlet app file on the Nexus 6 device comes with
a certificate chain of four RSA certificates (and signa-
tures). Loading an app into Trustzone requires validating
the signatures of all four certificates [49]. By incremen-
tally corrupting each certificate and then invoking the
loading of the app with the corrupted chain, we measure
the operation of validating one certificate to take about
270 million cycles on average. We extract the target
function FLIPENDIANNESS from the binary firmware
image and execute it in the non-secure environment to
measure its length of execution. We profile its invoca-
tion on a 256-byte buffer (the size of the 2048-bit RSA
modulus) to take on average 65k cycles.

To show the feasibility of our attack, we choose to at-
tack the validation of the fourth and final certificate in
the chain. This requires a very precise fault to be in-
duced within in a 65k-cycle-long targeted period within
an entire chain validation operation that takes 270 mil-
lion x 4 = 1.08 billion cycles, a duration that is four or-
ders of magnitude longer than the targeted period. Due to
the degree of precision needed, it is thus crucial to find a
way to determine a reliable time anchor (see Steps 2 / 3

in § 3.5) to guide the delivery of the fault.

Cache profiling To determine approximately which re-
gion of code is being executed during the chain vali-
dation at any point in time, we leverage side-channel-
based cache profiling attacks that operate across cores.
Since we are profiling code execution within Trustzone
in a separate core, we use recent advances in the cross-
core instruction- and data-based Prime+Probe15 cache
attack techniques [31,40,62]. We observe that the cross-
core profiling of the instruction-cache usage of the vic-
tim thread is more reliable than that of the data-cache
counterpart. As such, we adapt the instruction-based
Prime+Probe cache attack for our profiling stage.

Within the victim code, we first identify the code ad-
dress we want to monitor, and then compute the set
of memory addresses that is congruent to the cache set
of our monitored code address. Since we are doing
instruction-based cache profiling, we need to rely on
executing instructions instead of memory read opera-
tions. We implement a loop within the fault injection
thread to continuously execute dynamically generated
dummy instructions in the cache-set-congruent memory
addresses (the Prime step) and then timing the execu-
tion of these instructions (the Probe step) using the clock
cycle counter. We determine a threshold for the cycle

15Another prevalent class of cross-core cache attacks is the
Flush+Reload [61] cache attacks. We cannot use the Flush+Reload
technique to profile Trustzone execution because Flush+Reload re-
quires being able to map addresses that are shared between Trustzone
and the non-secure environment. Trustzone, by design, prohibits that.

Sample ID over time

‘G
a
p

 d
u
ra

tio
n
’,
 g

 v
a
lu

e
s

feat_cache1

feat_cache2

k1

k2

Figure 11: Cache eviction profile snapshot with cache-
based features.

count to indicate that the associated cache lines have
been evicted. The eviction patterns of the monitored
cache set provides an indication that the monitored code
address has been executed.

ATTACK ENABLER (TZ-SPECIFIC) #6: Memory ac-
cesses from the non-secure world can evict cache lines
used by Trustzone code, thereby enabling Prime+Probe-
style execution profiling of Trustzone code.

While we opt to use the Prime+Probe cache pro-
filing strategy in our attack, there are alternate side-
channel-based profiling techniques that can also be used
to achieve the same effect. Other microarchitectural
side channels like branch predictors, pipeline contention,
prefetchers, and even voltage and frequency side chan-
nels can also conceivably be leveraged to profile the vic-
tim execution state. Thus, more broadly speaking, the at-
tack enabler #6 is the presence of microarchitectural side
channels that allows us to profile code for firing faults.
App-specific timing feature. For our timing anchor, we
want a technique that is more fine-grained. We devise a
novel technique that uses the features derived from the
eviction timing to create a proxy for profiling program
phase behavior. First, we maintain a global increment-
ing count variable as an approximate time counter in the
loop. Then, using this counter, we track the duration be-
tween consecutive cache set evictions detected by our
Prime+Probe profiling. By treating this series of evic-
tion gap duration values, g, as a time-series stream, we
can approximate the execution profile of the chain vali-
dation code running within Trustzone.

We plot a snapshot of the cache profile characterizing
the validation of the fourth and final certificate in Fig-
ure 11. We observe that the beginning of each certifi-
cation validation is preceded by a large spike of up to
75,000 in the g values followed by a secondary smaller
spike. From experimentation, we found that FLIPENDI-
ANNESS runs after the second spike. Based on this obser-

1068 26th USENIX Security Symposium USENIX Association

180 190 200 210 220 230

feat_cache2

20

30

40

50

60

70
fe

a
t_

ca
ch

e
1

fault failure
fault success

Figure 12: Observed faults using the timing features.

vation, we change the profiling stage of the attack thread
to track two hand-crafted timing features to characterize
the instantaneous state of victim thread execution.

Timing anchor. We annotate the two timing features
on the cache profile plot in Figure 11. The first feature,
feat_cache1, tracks the length of the second spike minus
a constant k1. The second feature, feat_cache2, tracks
the cumulative total of g after the second spike, until the
g > k2. We use a value of k1 = 140 and k2 = 15 for
our experiments. By continuously monitoring values of
g after the second spike, the timing anchor is configured
to be the point when g > k2.

To evaluate the use of this timing anchor, we need a
means to assess when and how the specific invocation of
the FLIPENDIANNESS is faulted. First, we observe that
the memory buffer used to store Nrev is hard-coded to an
address 0x0FC8952C within Trustzone, and this buffer is
not zeroed out after the validation of each certificate. We
downgrade the firmware version to MMB29Q (Feb, 2016),
so that we can leverage a Trustzone memory safety viola-
tion vulnerability [17] to access the contents of Nrev after
the fourth certificate in the chain has been validated16.
Note that this does not affect the normal operation of the
chain validation because the relevant code sections for
these operations is identical across version MMB29Q (Feb,
2016) and MOB31S (Jan, 2017).

With this timing anchor, we perform a grid search for
the faulting parameters, F freq_hi, Fdur and Fpdelay that can
best induce faults in FLIPENDIANNESS. The parame-
ters F freq_hi = 3.99GHz and Fdur = 1 are observed to be
able to induce faults in FLIPENDIANNESS reliably. The
value of the pre-fault delay parameter Fpdelay is crucial
in controlling the type of byte(s) corruption in the tar-
get memory buffer Nrev. With different values of Fpdelay,
we plot the observed faults and failed attempts based on
the values of feat_cache1 and feat_cache2 in Figure 12.

16We are solely using this vulnerability to speed up the search for
the faulting parameters. They can be replaced by more accurate and
precise side-channel-based profiling techniques.

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
pre-fault delay loops, Fpdelay 1e4

0

50

100

150

200

250

p
o
si

ti
o
n
 o

f
fi
rs

t
g
lit

ch
e
d
 b

y
te

230

235

240

245

250

255

260

265

270

(f
e
a
t_

ca
ch

e
1

 +
 f

e
a
t_

ca
ch

e
2

)

Figure 13: Variability of faulted byte(s) position.

Each faulting attempt is considered a success if any bytes
within Nrev are corrupted during the fault.
Adaptive pre-delay. While we see faults within the tar-
get buffer, there is some variability in the position of the
fault induced within the buffer. In Figure 13, each value
of Fpdelay is observed to induce faults across all parts of
the buffer. To increase the precision in faulting, we mod-
ify the fault to be delivered based on an adaptive Fpdelay.

5.4 Fault Model
Based on the independent variables feat_cache1 and
feat_cache2, we build linear regression models to predict
Fpdelay that can best target a fault at an intended posi-
tion within the Nrev buffer. During each faulting attempt,
Fpdelay is computed only when the timing anchor is de-
tected. To evaluate the efficacy of the regression models,
we collect all observed faults with the goal of injecting a
fault at byte position 141. Figure 14 shows a significant
clustering of faults around positions 140 - 148.

More than 80% of the faults result in 1-3 bytes be-
ing corrupted within the Nrev buffer. Many of the faulted
values suggest that instructions are skipped when the
fault occurs. An example of a fault within a segment of
the buffer is having corrupted the original byte sequence
from 0xa777511b to 0xa7777777.

5.5 Putting it together
We use the following faulting parameters to target faults
to specific positions within the buffer: Fθ , RSA = {Fvolt =
1.055V, Fpdelay = adaptive, F freq_hi = 3.99GHz, Fdur =
1, F freq_lo = 2.61GHz}.
Factorizable modulus NA. About 20% of faulting at-
tempts (1153 out of 6000) result in a successful fault
within the target Nrev buffer. This set of faulted N values
consists of 805 unique values, of which 38 (4.72%) are
factorizable based on the algorithm described in § 5.2.
For our attack, we select one of the factorizable NA,

USENIX Association 26th USENIX Security Symposium 1069

0 50 100 150 200 250

Position of first faulted byte in the Nrev buffer

0

5

10

15

20

25

30
F
re

q
u
e
n
cy

 o
f

fa
u
lt

s

Figure 14: Histogram of observed faults and where the
faults occur. The intended faulted position is 141.

where two bytes at positions 141 and 142 are corrupted.
We show an example of this faulted and factorizable
modulus in Appendix A.4.

Actual attack. Using the above selected NA, we embed
our attack signature S

′
A into the widevine trustlet. Then

we conduct our CLKSCREW faulting attempts while in-
voking the self-signed app. On average, we observe one
instance of the desired fault in 65 attempts.

6 Discussion and Related Works

6.1 Applicability to other Platforms
Several highlighted attack enablers in preceding sections
apply to other leading architectures. In particular, the
entire industry is increasingly moving or has moved to
fine-grained energy management designs that separate
voltage/frequency domains for the cores. We leave the
exploration of these architectures to future research.

Intel. Intel’s recent processors are designed with the
base clock separated from the other clock domains for
more scope of energy consumption optimization [32,35].
This opens up possibilities of overclocking on Intel pro-
cessors [23]. Given these trends in energy management
design on Intel hardware and the growing prevalence
of Intel’s Secure Enclave SGX [34], a closer look at
whether the security guarantees still hold is warranted.

ARMv8. The ARMv8 devices adopt the ARM
big.LITTLE design that uses non-symmetric cores (such
as the “big” Cortex-A15 cores, and the “LITTLE”
Cortex-A7 cores) in same system [36]. Since these cores
are of different architectures, they exhibit different en-
ergy consumption characteristics. It is thus essential that
they have separate voltage/frequency domains. The use
of separate domains, like in the 32-bit ARMv7 architec-
ture explored in this work, expose the 64-bit ARMv8
devices to similar potential dangers from the software-
exposed energy management mechanisms.

Cloud computing providers. The need to improve en-
ergy consumption does not just apply to user devices; this

extends even to cloud computing providers. Since 2015,
Amazon AWS offers EC2 VM instances [16] where
power management controls are exposed within the vir-
tualized environment. In particular, EC2 users can fine-
tune the processor’s performance using P-state and C-
state controls [8]. This warrants further research to as-
sess the security ramifications of such user-exposed en-
ergy management controls in the cloud environment.

6.2 Hardware-Level Defenses

Operating limits in hardware. CLKSCREW requires
the hardware regulators to be able to push voltage/fre-
quency past the operating limits. To address this, hard
limits can be enforced within the regulators in the form
of additional limit-checking logic or e-fuses [55]. How-
ever, this can be complicated by three reasons. First,
adding such enforcement logic in the regulators requires
making these design decisions very early in the hardware
design process. However, the operational limits can only
be typically derived through rigorous electrical testing in
the post-manufacturing process. Second, manufacturing
process variations can change operational limits even for
chips of the same designs fabricated on the same wafer.
Third, these hardware regulators are designed to work
across a wide range of SoC processors. Imposing a one-
size-fits-all range of limits is challenging because SoC-
specific limits hinder the portability of these regulators
across multiple SoC. For example, the PMIC found on
the Nexus 6 is also deployed on the Galaxy Note 4.

Separate cross-boundary regulators. Another mitiga-
tion is to maintain different power domains across secu-
rity boundaries. This entails using a separate regulator
when the isolated environment is active. This has two
issues. First, while trusted execution technologies like
Trustzone and SGX separate execution modes for secu-
rity, the different modes continue to operate on the same
core. Maintaining separate regulators physically when
the execution mode switches can be expensive. Sec-
ond, DVFS components typically span across the system
stack. If the trusted execution uses dedicated regulators,
this implies that a similar cross-stack power manage-
ment solution needs to be implemented within the trusted
mode to optimize energy consumption. Such an imple-
mentation can impact the runtime of the trusted mode
and increase the complexity of the trusted code.

Redundancy/checks/randomization. To mitigate the
effects of erroneous computations due to induced faults,
researchers propose redesigning the application core chip
with additional logic and timing redundancy [13], as well
as recovery mechanisms [33]. Also, Bar-El et al. suggest
building duplicate microarchitectural units and encrypt-
ing memory bus operations for attacks that target mem-

1070 26th USENIX Security Symposium USENIX Association

ory operations [13]. Luo et al. present a clock glitch
detection technique that monitors the system clock sig-
nal using another higher frequency clock signal [41].
While many of these works are demonstrated on FP-
GAs [58] and ASICs [54], it is unclear how feasible it
is on commodity devices and how much chip area and
runtime overhead it adds. Besides adding redundancy,
recent work proposes adding randomization using recon-
figurable hardware as a mitigation strategy [59].

6.3 Software-Level Defenses

Randomization. Since CLKSCREW requires some de-
gree of timing precision in delivering the faults, one
mitigation strategy is to introduce randomization (via
no-op loops) to the runtime execution of the code to
be protected. However, we note that while this miti-
gates against attacks without a timing anchor (AES at-
tack in § 4), it may have limited protection against at-
tacks that use forms of runtime profiling for the timing
guidance (RSA attack in § 5).
Redundancy and checks. Several software-only de-
fenses propose compiling code with checksum integrity
verification and execution redundancy (executing sensi-
tive code multiple times) [13, 15]. While these defenses
may be deployed on systems requiring high dependabil-
ity, they are not typically deployed on commodity de-
vices like phones because they impact energy efficiency.

6.4 Subverting Cryptography with Faults
Boneh et al. offer the first DFA theoretical model to
breaking various cryptographic schemes using injected
hardware faults [22]. Subsequently, many researchers
demonstrate physical fault attacks using a range of so-
phisticated fault injection equipment like laser [24, 25]
and heat [29]. Compared to these attacks including all
known undervolting [14,45] and overclocking [20] ones,
CLKSCREW does not need physical access to the tar-
get devices, since it is initiated entirely from software.
CLKSCREW is also the first to demonstrate such at-
tacks on a commodity device. We emphasize that while
CLKSCREW shows how faults can break cryptographic
schemes, it does so to highlight the dangers of hard-
ware regulators exposing software-access interfaces, es-
pecially across security trust boundaries.

6.5 Relation to Rowhammer Faults
Kim et al. first present reliability issues with DRAM
memory [37] (dubbed the “Rowhammer” problem).
Since then, many works use the Rowhammer is-
sue to demonstrate the dangers of such software-
induced hardware-based transient bit-flips in practical

scenarios ranging from browsers [30], virtualized en-
vironments [50], privilege escalation on Linux ker-
nel [52] and from Android apps [57]. Like Rowham-
mer, CLKSCREW is equally pervasive. However,
CLKSCREW is the manifestation of a different at-
tack vector relying on software-exposed energy man-
agement mechanisms. The complexity of these cross-
stack mechanisms makes any potential mitigation against
CLKSCREW more complicated and challenging. Fur-
thermore, unlike Rowhammer that corrupts DRAM
memory, CLKSCREW targets microarchitectural oper-
ations. While we use CLKSCREW to induce faults in
memory contents, CLKSCREW can conceivably affect a
wider range of computation in microarchitectural units
other than memory (such as caches, branch prediction
units, arithmetic logic units and floating point units).

7 Conclusions

As researchers and practitioners embark upon increas-
ingly aggressive cooperative hardware-software mecha-
nisms with the aim of improving energy efficiency, this
work shows, for the first time, that doing so may create
serious security vulnerabilities. With only publicly avail-
able information, we have shown that the sophisticated
energy management mechanisms used in state-of-the-art
mobile SoCs are vulnerable to confidentiality, integrity
and availability attacks. Our CLKSCREW attack is able
to subvert even hardware-enforced security isolation and
does not require physical access, further increasing the
risk and danger of this attack vector.

While we offer proof of attackability in this paper, the
attack can be improved, extended and combined with
other attacks in a number of ways. For instance, using
faults to induce specific values at exact times (as opposed
to random values at approximate times) can substan-
tially increase the power of this technique. Furthermore,
CLKSCREW is the tip of the iceberg: more security vul-
nerabilities are likely to surface in emerging energy opti-
mization techniques, such as finer-grained controls, dis-
tributed control of voltage and frequency islands, and
near/sub-threshold optimizations.

Our analysis suggests that there is unlikely to be a
single, simple fix, or even a piecemeal fix, that can en-
tirely prevent CLKSCREW style attacks. Many of the
design decisions that contribute to the success of the at-
tack are supported by practical engineering concerns. In
other words, the root cause is not a specific hardware or
software bug but rather a series of well-thought-out, nev-
ertheless security-oblivious, design decisions. To pre-
vent these problems, a coordinated full system response
is likely needed, along with accepting the fact that some
modest cost increases may be necessary to harden en-
ergy management systems. This demands research in a

USENIX Association 26th USENIX Security Symposium 1071

number of areas such as better Computer Aided Design
(CAD) tools for analyzing timing violations, better val-
idation and verification methodology in the presence of
DVFS, architectural approaches for DVFS isolation, and
authenticated mechanisms for accessing voltage and fre-
quency regulators. As system designers work to invent
and implement these protections, security researchers
can complement these efforts by creating newer and ex-
citing attacks on these protections.

Acknowledgments

We thank the anonymous reviewers for their feedback
on this work. We thank Yuan Kang for his feedback,
especially on the case studies. This work is supported by
a fellowship from the Alfred P. Sloan Foundation.

References
[1] Firmware update for Nexus 6 (shamu). https://dl.goo

gle.com/dl/android/aosp/shamu-mob31s-fac
tory-c73a35ef.zip. Factory Images for Nexus and Pixel
Devices.

[2] MSM Subsystem Power Manager (spm-v2). https://andr
oid.googlesource.com/kernel/msm.git/+/andr
oid-msm-shamu-3.10-lollipop-mr1/Documentat
ion/devicetree/bindings/arm/msm/spm-v2.txt.
Git at Google.

[3] Nexus 6 Qualcomm-stipulated OPP. https://android.go
oglesource.com/kernel/msm/+/android-msm-sha
mu-3.10-lollipop-mr1/arch/arm/boot/dts/qc
om/apq8084.dtsi. Git at Google.

[4] QSEECOM source code. https://android.googleso
urce.com/kernel/msm/+/android-msm-shamu-3.
10-lollipop-mr1/drivers/misc/qseecom.c. Git at
Google.

[5] Qualcomm Krait PMIC frequency driver source code. https:
//android.googlesource.com/kernel/msm/+/an
droid-msm-shamu-3.10-lollipop-mr1/drivers/
clk/qcom/clock-krait.c. Git at Google.

[6] Qualcomm Krait PMIC voltage regulator driver source code. ht
tps://android.googlesource.com/kernel/msm/
+/android-msm-shamu-3.10-lollipop-mr1/arch
/arm/mach-msm/krait-regulator.c. Git at Google.

[7] Mobile Hardware Stats 2016-09. http://hwstats.unit
y3d.com/mobile/cpu.html, Sep 2016. Unity.

[8] AMAZON. Processor State Control for Your EC2 Instance. ht
tp://docs.aws.amazon.com/AWSEC2/latest/Use
rGuide/processor_state_control.html. Amazon
AWS.

[9] ANATI, I., GUERON, S., JOHNSON, S., AND SCARLATA, V.
Innovative technology for cpu based attestation and sealing. In
Proceedings of the 2nd international workshop on hardware and
architectural support for security and privacy (HASP) (2013),
vol. 13.

[10] ARM. c9, Performance Monitor Control Register. http://
infocenter.arm.com/help/index.jsp?topic=/c
om.arm.doc.ddi0344b/Bgbdeggf.html. Cortex-A8
Technical Reference Manual.

[11] ARM. Security Technology - Building a Secure System using
TrustZone Technology. ARM Technical White Paper (2009).

[12] ARM. Power Management with big.LITTLE: A technical
overview. https://community.arm.com/processors
/b/blog/posts/power-management-with-big-l
ittle-a-technical-overview, sep 2013.

[13] BAR-EL, H., CHOUKRI, H., NACCACHE, D., TUNSTALL, M.,
AND WHELAN, C. The sorcerer’s apprentice guide to fault at-
tacks. Proceedings of the IEEE 94, 2 (2006), 370–382.

[14] BARENGHI, A., BERTONI, G., PARRINELLO, E., AND PELOSI,
G. Low voltage fault attacks on the rsa cryptosystem. In Fault Di-
agnosis and Tolerance in Cryptography (FDTC), 2009 Workshop
on (2009), IEEE, pp. 23–31.

[15] BARENGHI, A., BREVEGLIERI, L., KOREN, I., PELOSI, G.,
AND REGAZZONI, F. Countermeasures against fault attacks on
software implemented AES: effectiveness and cost. In Proceed-
ings of the 5th Workshop on Embedded Systems Security (2010),
ACM, p. 7.

[16] BARR, J. Now Available - New C4 Instances. https://aw
s.amazon.com/blogs/aws/now-available-new-c
4-instances/, jan 2015.

[17] BEAUPRE, S. TRUSTNONE - Signed comparison on unsigned
user input. http://theroot.ninja/disclosures/TR
USTNONE_1.0-11282015.pdf.

[18] BERZATI, A., CANOVAS, C., AND GOUBIN, L. Perturbat-
ing RSA public keys: An improved attack. In International
Workshop on Cryptographic Hardware and Embedded Systems
(CHES) (2008), Springer, pp. 380–395.

[19] BIHAM, E., CARMELI, Y., AND SHAMIR, A. Bug attacks. In
Annual International Cryptology Conference (2008), Springer,
pp. 221–240.

[20] BLÖMER, J., DA SILVA, R. G., GÜNTHER, P., KRÄMER, J.,
AND SEIFERT, J.-P. A practical second-order fault attack against
a real-world pairing implementation. In Fault Diagnosis and
Tolerance in Cryptography (FDTC), 2014 Workshop on (2014),
IEEE, pp. 123–136.

[21] BONEH, D. Twenty years of attacks on the RSA cryptosys-
tem. Notices of the American Mathematical Society (AMS) 46,
2 (1999), 203–213.

[22] BONEH, D., DEMILLO, R. A., AND LIPTON, R. J. On the
Importance of Checking Cryptographic Protocols for Faults. In
Proceedings of the 16th Annual International Conference on The-
ory and Application of Cryptographic Techniques (Berlin, Hei-
delberg, 1997), EUROCRYPT’97, Springer-Verlag, pp. 37–51.

[23] BTARUNR. Rejoice! Base Clock Overclocking to Make a Come-
back with Skylake. https://www.techpowerup.com/
218315/rejoice-base-clock-overclocking-t
o-make-a-comeback-with-skylake, Dec 2015. Tech-
Powerup.

[24] CANIVET, G., MAISTRI, P., LEVEUGLE, R., CLÉDIÈRE, J.,
VALETTE, F., AND RENAUDIN, M. Glitch and Laser Fault
Attacks onto a Secure AES Implementation on a SRAM-Based
FPGA. Journal of Cryptology 24, 2 (2011), 247–268.

[25] DOBRAUNIG, C., EICHLSEDER, M., KORAK, T., LOMNÉ, V.,
AND MENDEL, F. Statistical Fault Attacks on Nonce-Based Au-
thenticated Encryption Schemes. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2016, pp. 369–395.

[26] EDGE, J. KS2012: ARM: Secure monitor API. https://lw
n.net/Articles/513756/, Aug 2012.

[27] EKBERG, J.-E., AND KOSTIAINEN, K. Trusted Execution Envi-
ronments on Mobile Devices. https://www.cs.helsink
i.fi/group/secures/CCS-tutorial/tutorial-s
lides.pdf, Nov 2013. ACM CCS 2013 tutorial.

1072 26th USENIX Security Symposium USENIX Association

https://dl.google.com/dl/android/aosp/shamu-mob31s-factory-c73a35ef.zip
https://dl.google.com/dl/android/aosp/shamu-mob31s-factory-c73a35ef.zip
https://dl.google.com/dl/android/aosp/shamu-mob31s-factory-c73a35ef.zip
https://android.googlesource.com/kernel/msm.git/+/android-msm-shamu-3.10-lollipop-mr1/Documentation/devicetree/bindings/arm/msm/spm-v2.txt
https://android.googlesource.com/kernel/msm.git/+/android-msm-shamu-3.10-lollipop-mr1/Documentation/devicetree/bindings/arm/msm/spm-v2.txt
https://android.googlesource.com/kernel/msm.git/+/android-msm-shamu-3.10-lollipop-mr1/Documentation/devicetree/bindings/arm/msm/spm-v2.txt
https://android.googlesource.com/kernel/msm.git/+/android-msm-shamu-3.10-lollipop-mr1/Documentation/devicetree/bindings/arm/msm/spm-v2.txt
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-lollipop-mr1/arch/arm/boot/dts/qcom/apq8084.dtsi
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-lollipop-mr1/arch/arm/boot/dts/qcom/apq8084.dtsi
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-lollipop-mr1/arch/arm/boot/dts/qcom/apq8084.dtsi
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-lollipop-mr1/arch/arm/boot/dts/qcom/apq8084.dtsi
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-lollipop-mr1/drivers/misc/qseecom.c
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-lollipop-mr1/drivers/misc/qseecom.c
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-lollipop-mr1/drivers/misc/qseecom.c
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-lollipop-mr1/drivers/clk/qcom/clock-krait.c
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-lollipop-mr1/drivers/clk/qcom/clock-krait.c
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-lollipop-mr1/drivers/clk/qcom/clock-krait.c
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-lollipop-mr1/drivers/clk/qcom/clock-krait.c
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-lollipop-mr1/arch/arm/mach-msm/krait-regulator.c
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-lollipop-mr1/arch/arm/mach-msm/krait-regulator.c
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-lollipop-mr1/arch/arm/mach-msm/krait-regulator.c
https://android.googlesource.com/kernel/msm/+/android-msm-shamu-3.10-lollipop-mr1/arch/arm/mach-msm/krait-regulator.c
http://hwstats.unity3d.com/mobile/cpu.html
http://hwstats.unity3d.com/mobile/cpu.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/processor_state_control.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/processor_state_control.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/processor_state_control.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0344b/Bgbdeggf.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0344b/Bgbdeggf.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0344b/Bgbdeggf.html
https://community.arm.com/processors/b/blog/posts/power-management-with-big-l
https://community.arm.com/processors/b/blog/posts/power-management-with-big-l
ittle-a-technical-overview
https://aws.amazon.com/blogs/aws/now-available-new-c4-instances/
https://aws.amazon.com/blogs/aws/now-available-new-c4-instances/
https://aws.amazon.com/blogs/aws/now-available-new-c4-instances/
http://theroot.ninja/disclosures/TRUSTNONE_1.0-11282015.pdf
http://theroot.ninja/disclosures/TRUSTNONE_1.0-11282015.pdf
https://www.techpowerup.com/218315/rejoice-base-clock-overclocking-to-make-a-comeback-with-skylake
https://www.techpowerup.com/218315/rejoice-base-clock-overclocking-to-make-a-comeback-with-skylake
https://www.techpowerup.com/218315/rejoice-base-clock-overclocking-to-make-a-comeback-with-skylake
https://lwn.net/Articles/513756/
https://lwn.net/Articles/513756/
https://www.cs.helsinki.fi/group/secures/CCS-tutorial/tutorial-slides.pdf
https://www.cs.helsinki.fi/group/secures/CCS-tutorial/tutorial-slides.pdf
https://www.cs.helsinki.fi/group/secures/CCS-tutorial/tutorial-slides.pdf

[28] GOOGLE. Multiplatform Content Protection for Internet Video
Delivery. https://www.widevine.com/wv_drm.html.
Widevine DRM.

[29] GOVINDAVAJHALA, S., AND APPEL, A. W. Using Memory
Errors to Attack a Virtual Machine. In Proceedings of the 2003
IEEE Symposium on Security and Privacy (S&P), pp. 154–165.

[30] GRUSS, D., MAURICE, C., AND MANGARD, S. Rowhammer.
js: A remote software-induced fault attack in javascript. In De-
tection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2016, pp. 300–321.

[31] GRUSS, D., SPREITZER, R., AND MANGARD, S. Cache
Template Attacks: Automating Attacks on Inclusive Last-Level
Caches. In 24th USENIX Security Symposium (USENIX Security
15) (Washington, D.C., 2015), USENIX Association, pp. 897–
912.

[32] HAMMARLUND, P., KUMAR, R., OSBORNE, R. B., RAJWAR,
R., SINGHAL, R., D’SA, R., CHAPPELL, R., KAUSHIK, S.,
CHENNUPATY, S., JOURDAN, S., ET AL. Haswell: The fourth-
generation Intel core processor. IEEE Micro, 2 (2014), 6–20.

[33] HUU, N. M., ROBISSON, B., AGOYAN, M., AND DRACH, N.
Low-cost recovery for the code integrity protection in secure em-
bedded processors. In Hardware-Oriented Security and Trust
(HOST), 2011 IEEE International Symposium on (2011), IEEE,
pp. 99–104.

[34] INTEL. Intel Software Guard Extensions (Intel SGX). https:
//software.intel.com/en-us/sgx.

[35] INTEL. The Engine for Digital Transformation in the Data Cen-
ter. http://www.intel.com/content/dam/www/pu
blic/us/en/documents/product-briefs/xeon-e
5-brief.pdf. Intel Product Brief.

[36] JEFF, B. big.LITTLE system architecture from arm: Saving
power through heterogeneous multiprocessing and task context
migration. In Proceedings of the 49th Annual Design Automation
Conference (DAC) (2012), ACM, pp. 1143–1146.

[37] KIM, Y., DALY, R., KIM, J., FALLIN, C., LEE, J. H., LEE,
D., WILKERSON, C., LAI, K., AND MUTLU, O. Flipping bits
in memory without accessing them: An experimental study of
DRAM disturbance errors. In 2014 ACM/IEEE 41st Interna-
tional Symposium on Computer Architecture (ISCA) (June 2014),
pp. 361–372.

[38] KOC, C. K. High-speed RSA implementation. Tech. rep., Tech-
nical Report, RSA Laboratories, 1994.

[39] LENSTRA JR, H. W. Factoring integers with elliptic curves. An-
nals of mathematics (1987), 649–673.

[40] LIPP, M., GRUSS, D., SPREITZER, R., MAURICE, C., AND
MANGARD, S. Armageddon: Cache attacks on mobile de-
vices. In 25th USENIX Security Symposium (USENIX Security
16) (Austin, TX, 2016), USENIX Association, pp. 549–564.

[41] LUO, P., LUO, C., AND FEI, Y. System Clock and Power Supply
Cross-Checking for Glitch Detection. Cryptology ePrint Archive,
Report 2016/968, 2016. http://eprint.iacr.org/
2016/968.

[42] MENEZES, A. J., VANSTONE, S. A., AND OORSCHOT, P. C. V.
Handbook of Applied Cryptography, 1st ed. CRC Press, Inc.,
Boca Raton, FL, USA, 1996.

[43] MILLER, F. P., VANDOME, A. F., AND MCBREWSTER, J. Ad-
vanced Encryption Standard. Alpha Press, 2009.

[44] MONTGOMERY, P. L. Modular multiplication without trial divi-
sion. Mathematics of computation 44, 170 (1985), 519–521.

[45] O’FLYNN, C. Fault Injection using Crowbars on Embedded Sys-
tems. Tech. rep., IACR Cryptology ePrint Archive, 2016.

[46] PALLIPADI, V., AND STARIKOVSKIY, A. The ondemand gover-
nor. In Proceedings of the Linux Symposium (2006), vol. 2, sn,
pp. 215–230.

[47] PATTERSON, D. A., AND HENNESSY, J. L. Computer Archi-
tecture: A Quantitative Approach. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1990.

[48] QUALCOMM. Snapdragon S4 Processors: System on Chip Solu-
tions for a New Mobile Age. https://www.qualcomm.c
om/documents/snapdragon-s4-processors-sys
tem-chip-soluti
ons-new-mobile-age, jul 2013.

[49] QUALCOMM. Secure Boot and Image Authentication - Technical
Overview. https://www.qualcomm.com/documents
/secure-boot-and-image-authentication-tec
hnical-overview, Oct 2016.

[50] RAZAVI, K., GRAS, B., BOSMAN, E., PRENEEL, B., GIUF-
FRIDA, C., AND BOS, H. Flip feng shui: Hammering a nee-
dle in the software stack. In 25th USENIX Security Symposium
(USENIX Security 16) (Austin, TX, 2016), USENIX Association,
pp. 1–18.

[51] RIVEST, R. L., SHAMIR, A., AND ADLEMAN, L. A method for
obtaining digital signatures and public-key cryptosystems. Com-
munications of the ACM 21, 2 (1978), 120–126.

[52] SEABORN, M., AND DULLIEN, T. Exploiting the DRAM
rowhammer bug to gain kernel privileges. Black Hat (2015).

[53] SHEARER, F. Power Management in Mobile Devices. Newnes,
2011.

[54] STAMENKOVIĆ, Z., PETROVIĆ, V., AND SCHOOF, G. Fault-
tolerant ASIC: Design and implementation. Facta universitatis-
series: Electronics and Energetics 26, 3 (2013), 175–186.

[55] STMICROELECTRONICS. E-fuses. http://www.st.com/e
n/power-management/e-fuses.html?querycrite
ria=productId=SC1532. How-swap power management.

[56] TUNSTALL, M., MUKHOPADHYAY, D., AND ALI, S. Differen-
tial Fault Analysis of the Advanced Encryption Standard using
a Single Fault. In IFIP International Workshop on Information
Security Theory and Practices (2011), Springer, pp. 224–233.

[57] VAN DER VEEN, V., FRATANTONIO, Y., LINDORFER, M.,
GRUSS, D., MAURICE, C., VIGNA, G., BOS, H., RAZAVI, K.,
AND GIUFFRIDA, C. Drammer: Deterministic Rowhammer At-
tacks on Mobile Platforms. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security
(CCS) (Nov 2016).

[58] VELEGALATI, R., SHAH, K., AND KAPS, J.-P. Glitch Detec-
tion in Hardware Implementations on FPGAs Using Delay Based
Sampling Techniques. In Proceedings of the 2013 Euromicro
Conference on Digital System Design (Washington, DC, USA,
2013), DSD ’13, IEEE Computer Society, pp. 947–954.

[59] WANG, B., LIU, L., DENG, C., ZHU, M., YIN, S., AND WEI,
S. Against Double Fault Attacks: Injection Effort Model, Space
and Time Randomization Based Countermeasures for Reconfig-
urable Array Architecture. IEEE Transactions on Information
Forensics and Security 11, 6 (2016), 1151–1164.

[60] WEISER, M., WELCH, B., DEMERS, A., AND SHENKER, S.
Scheduling for Reduced CPU Energy. In Proceedings of the 1st
USENIX Conference on Operating Systems Design and Imple-
mentation (OSDI) (1994).

[61] YAROM, Y., AND FALKNER, K. FLUSH+RELOAD: A High
Resolution, Low Noise, L3 Cache Side-Channel Attack. In
23rd USENIX Security Symposium (USENIX Security 14) (2014),
pp. 719–732.

USENIX Association 26th USENIX Security Symposium 1073

https://www.widevine.com/wv_drm.html
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xeon-e5-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xeon-e5-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xeon-e5-brief.pdf
http://eprint.iacr.org/2016/968
http://eprint.iacr.org/2016/968
https://www.qualcomm.com/documents/snapdragon-s4-processors-system-chip-soluti
https://www.qualcomm.com/documents/snapdragon-s4-processors-system-chip-soluti
https://www.qualcomm.com/documents/snapdragon-s4-processors-system-chip-soluti
ons-new-mobile-age
https://www.qualcomm.com/documents/secure-boot-and-image-authentication-technical-overview
https://www.qualcomm.com/documents/secure-boot-and-image-authentication-technical-overview
https://www.qualcomm.com/documents/secure-boot-and-image-authentication-technical-overview
http://www.st.com/en/power-management/e-fuses.html?querycriteria=productId=SC1532
http://www.st.com/en/power-management/e-fuses.html?querycriteria=productId=SC1532
http://www.st.com/en/power-management/e-fuses.html?querycriteria=productId=SC1532

[62] ZHANG, X., XIAO, Y., AND ZHANG, Y. Return-Oriented Flush-
Reload Side Channels on ARM and Their Implications for An-
droid Devices. In Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS) (2016),
pp. 858–870.

A Appendix

A.1 Timing Violation due to Undervolting

TFF

clock pulse

input (0 1)

Qsrc

Ddst

output (0 0)

1

Tclk

Tmax_path’

0

1

0

1

0

1

0

1

0

TFF
Tsetup

glitched
output

0

Figure 15: Glitch due to undervolting: Increasing propa-
gation time of the critical path between the two consecu-
tive flip-flops, clock period T max_path→ T max_path

′ results
in a bit-flip in output 1→ 0.

A.2 FLIPENDIANNESS Implementation

Algorithm 2 Reverse the endianness of a memory buffer.
1: procedure FLIPENDIANNESS(src)
2: d← 0
3: dst←{0}
4: for i ∈ {0 .. len(src)/4−1} do
5: for j ∈ {0 .. 2} do
6: d← (src[i∗4+ j] | d)� 8
7: end for
8: d← src[i∗4+3] | d
9: k← len(src)− i∗4−4

10: dst[k .. k+3]← d
11: end for
12: return dst
13: end procedure

A.3 Vendor-Stipulated vs Observed OPPs

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05
Voltage (V)

0.5

1.0

1.5

2.0

2.5

F
re

q
u
e
n
cy

 (
G

H
z)

Nexus 6P (A57 cluster core)

Maximum OPP

Vendor stock OPP

Figure 16: Vendor-stipulated vs maximum voltage/fre-
quency OPPs for Nexus 6P.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Voltage (V)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

F
re

q
u
e
n
cy

 (
G

H
z)

Pixel ("Performance" cluster core)

Maximum OPP

Vendor stock OPP

Figure 17: Vendor-stipulated vs maximum voltage/fre-
quency OPPs for Pixel.

A.4 Example Glitch in RSA Modulus
Original Modulus N:
...f35a...

Corrupted Modulus NA:
c44dc735f6682a261a0b8545a62dd13df4c646a5ede482cef85892

5baa1811fa0284766b3d1d2b4d6893df4d9c045efe3e84d8c5d036

31b25420f1231d8211e2322eb7eb524da6c1e8fb4c3ae4a8f5ca13

d1e0591f5c64e8e711b3726215cec59ed0ebc6bb042b917d445288

87915fdf764df691d183e16f31ba1ed94c84b476e74b488463e855

51022021763a3a3a64ddf105c1530ef3fcf7e54233e5d3a4747bbb

17328a63e6e3384ac25ee80054bd566855e2eb59a2fd168d3643e4

4851acf0d118fb03c73ebc099b4add59c39367d6c91f498d8d607a

f2e57cc73e3b5718435a81123f080267726a2a9c1cc94b9c6bb681

7427b85d8c670f9a53a777511b

Factors of NA:
0x3, 0x11b, 0xcb9, 0x4a70807d6567959438227805b12a19...

Private Exponent dA:
04160eecc648a3da19abdc42af4cfb41a798e5eb8b1b49c2c29...

1074 26th USENIX Security Symposium USENIX Association

	Introduction
	Background
	Dynamic Voltage & Frequency Scaling
	Hardware Support for DVFS
	Software Support for DVFS

	Achieving the First CLKscrew Fault
	How Timing Faults Occur
	Challenges of CLKscrew Attacks
	Characterization of Regulator Limits
	Containing the Fault within a Core
	CLKscrew Attack Steps
	Isolation-Agnostic DVFS

	TZ Attack #1: Inferring AES Keys
	Trustzone AES Decryption App
	Timing Profiling
	Fault Model
	Putting it together

	TZ Attack #2: Loading Self-Signed Apps
	Trustzone Signature Authentication
	Attack Strategy and Cryptanalysis
	Where to inject the runtime fault?
	How to craft the attack signature SA'?

	Timing Profiling
	Fault Model
	Putting it together

	Discussion and Related Works
	Applicability to other Platforms
	Hardware-Level Defenses
	Software-Level Defenses
	Subverting Cryptography with Faults
	Relation to Rowhammer Faults

	Conclusions
	A Appendix
	A.1 Timing Violation due to Undervolting
	A.2 FlipEndianness Implementation
	A.3 Vendor-Stipulated vs Observed OPPs
	A.4 Example Glitch in RSA Modulus

